Полезное
Информационные и обучающие видеоролики, вопросы и ответы, техническая документация и наша книга

3.1. Магнезит каустический, его получение и некоторые специфические особенности и свойства

Важнейшим соединением магния, применяемым в различных отраслях промышленности, и в том числе в строительстве, является оксид магния MgO. В природе он встречается в виде минерала периклаза — бесцветных кристаллов с кубической решеткой типа NaCl. Некоторые данные по важнейшим свойствам периклаза приведены в разделе 2 (таблица 2.8). Подчеркнем, что периклаз является исключительно стабильным (высокоэнергоплотным) минералом, встречающимся в нижних горизонтах земной коры и в мантии. Именно поэтому он успешно используется в различных промышленных областях.

В качестве сырья для производства оксида магния обычно используют карбонатные осадочные горные породы морского происхождения, представленные доломитом CaMg(CO3)2, магнезитом MgCO3, или метасоматически либо гидротермально измененные первичные основные магматические силикатные горные породы, преобразованные в амфибол Mg7[Si8O22](OH)2, серпентин Mg6[Si4O10](OH)8, тальк Mg3[Si4O10](OH)2 и др. Вторая группа указанных Mg-содержащих минералов является менее перспективным сырьем и разрабатывается в странах, бедных магнезитом.

Наиболее ценным для строительной промышленности является так называемый «каустический магнезит» — оксид магния, применяемый в производстве вяжущего материала.

Магнезит каустический получают либо обжигом природного магнезита Mg(CO3)  при температуре выше температуры его разложения (диссоциации) и ниже температуры спекания, либо путем улавливания пыли, образующейся при производстве периклазового порошка (Корнеев, Зозуля, 2004).

Крупнейшим заводом по производству магнезиальных огнеупорных изделий на основе спеченного периклаза является всемирно известное предприятие ОАО «Комбинат Магнезит» (г. Сатка Челябинской области). Производственная мощность комбината позволяет получать на вращающихся обжиговых печах свыше 1 млн. тонн спеченного периклаза. Около 500 тысяч тонн пыли улавливается в циклонах и электрофильтрах, и часть этой каустической пыли утилизируется в виде порошков магнезиальных каустических (ГОСТ 1216-87), используемых в строительстве в качестве магнезиального вяжущего.

При обжиге природных магнезитов максимальная гидравлическая активность образующегося каустического магнезита достигается в диапазоне температур 650-900оС, при более высоких температурах активность падает, а при температуре 1400оС и выше образуется «намертво обожженный» магнезит, практически не проявляющий вяжущих свойств.

Каустический магнезит производится также в ООО «Сибирские порошки, где получается в процессе низкотемпературного (Т = 850°С) обжига и имеет преимущество перед пылеуносом по содержанию активного MgO в конечном продукте.

В результате декарбонизации Mg(CO3) при низких и умеренных температурах образуется свободный оксид магния, отличающийся от периклаза более низкими показателями преломления, увеличенными параметрами кубической элементарной ячейки и более низкой плотностью. Именно такой оксид магния (каустический магнезит) используется в качестве вяжущего вещества, которое при затворении раствором MgCl2 способно быстро твердеть и набирать прочность на воздухе. Ниже приводятся результаты исследований (Корнеев, Медведева и др., 1997) по определению оптимальных условий получения (синтеза) такого материала.

Используя в качестве исходного сырья тонко измельченный магнезит из Сатки, были испытаны различные режимы его обжига и получены порошки каустические магнезитовые высокой активности
(в 3 раза превышающие активность порошков каустических магнезитовых по ГОСТу 1216-87). Оптимальная область температур обжига — 660-800оС, причем с увеличением температуры длительность обжига при данной температуре сокращается от 210 минут при 660оС до 45 минут при 800оС (таблица 3.1). Получающийся каустический магнезит через 6 часов твердения характеризуется прочностью при сжатии ~35 МПа.

Таблица 3.1

Влияние режима обжига магнезита Mg(CO3) на степень его декарбонизации (Корнеев, Медведева и др., 1997)

Режим обжига Содержание Mg(CO3), %
Температура, ºС Время, мин По данным п.п.п. По данным ИКС-метода
660 150 10,14 10,1
660 180 8,35 8,5
660 210 6,18 6,2
660 240 3,76 4,0
680 90 18,54 18,5
680 120 8,42 8,5
680 150 5,40 5,4
680 180 2,92 3,1
700 90 9,43 9,5
700 120 5,49 5,5
700 135 4,53 4,5
700 180 1,22 1,5
720 30 50,67 50,6
720 60 13,94 14,0
720 90 7,92 8,0
720 120 4,38 4,5
740 30 37,28 37,2
740 60 8,80 8,8
740 90 4,49 4,5
740 120 1,45 1,5
760 30 33,86 34,0
760 60 4,93 5,0
760 75 1,22 1,2
780 30 20,82 20,8
780 45 4,29 4,3
780 60 0,77 0,7
800 30 15,79 16,0
800 45 3,38 3,5
800 60 0,09 0,1
800 90 0 0

 

Было также установлено, что порошки каустические магнезитовые обладают увеличенным параметром кубической элементарной ячейки (αо > 4,218 Å по сравнению с периклазом — αо = 4,212 Å), что можно связать с дефектностью образующегося при разложении Mg(CO3) каустического магнезита. Кроме того, последний имеет пониженный показатель преломления (N = 1,55-1,72) по сравнению с обычным периклазом (N = 1,738).

Нашими исследованиями были также установлены два дополнительных отличия высоко активного каустического магнезита от периклаза: аномальная анизотропия (периклаз изотропен) и более низкая микротвердость (по Виккерсу) — 600-700 кгс/мм2 в отличие от периклаза (~1000 кгс/мм2). Кроме того, наиболее крупные из вновь образованных кристаллов каустического магнезита по результатам наблюдений под микроскопом имеют многочисленные поры, обладают своеобразной ячеистой текстурой (рис. 3.13), что, по-видимому, является благоприятным фактором для его эффективного взаимодействия с раствором бишофита.

Резюмируя материалы данного раздела, можно сделать следующие выводы:

  1. Для получения магнезиального вяжущего обжиг магнезита следует вести в условиях мягкого обжига (в диапазоне температур 660-800оС), обеспечивающего неполное разложение Mg(CO3) — до степени декарбонизации 92-95%.
  2. Новообразованный каустический магнезит, будучи по составу и структуре аналогом периклаза, отличается от последнего рядом специфических особенностей: дефектностью структуры, повышенным параметром решетки (αо), более низким показателем преломления, аномальной анизотропией, более низкой микротвердостью, пористой (ячеистой) текстурой кристаллических индивидов.

В заключение следует отметить, что в России нет промышленного производства, позволяющего прямым обжигом природного магнезита получать качественный активный каустический магнезит целевого назначения (для производства магнезиального вяжущего). Поэтому материал в виде уловленной пыли, образующейся при производстве спеченного периклазового порошка, является пока единственным доступным товарным продуктом для наших целей — производства магнезиального цемента.

« Предыдущая глава Глава 3 Магнезиальный цемент и его свойства.
Следующая глава » 3.2. Вяжущие свойства каустического магнезита